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We propose a simple model for the total pp/pp̄ cross section, which is a
generalization of the minijet model with the inclusion of a window in the pT -
spectrum associated to the saturation physics. Our model implies a natural
cutoff for the perturbative calculations which modifies the energy behavior
of this component, so that it satisfies the Froissart bound. Including the
saturated component, we obtain a satisfactory description of the very high
energy experimental data.
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Long ago a QCD based explanation for the growth of the hadronic cross
sections was proposed by Gaisser and Halzen [1]. In their approach, called
minijet model, the total cross section can be decomposed as σtot = σ0 +
σpQCD where σ0 characterizes the nonperturbative contribution and σpQCD

is calculable in perturbative QCD. Unfortunately, this approach implies a
power-like energy behavior for the total cross section, violating the Froissart
bound. Several attempts were made to reduce this too fast growth [2].

At high energies the small-x gluons in a hadron wavefunction should
form a Color Glass Condensate (CGC) [3]. This new state of matter is
characterized by gluon saturation and by a typical momentum scale, the
saturation scale Qs, which determines the critical line separating the linear
and saturation regimes of the QCD dynamics.
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Fig. 1. Perturbative (solid lines) and saturated components (dashed lines) of the

total cross section (normalized by ln2 s)

Some attempts to reconcile the QCD parton picture with the Froissart
limit using saturation physics were proposed in recent years [4]. Here we
generalize the minijet model assuming the existence of a saturation window
between the nonperturbative and perturbative regimes of QCD, which grows
when the energy increases, since Qs grows with the energy. The cross section
is then written as:

σtot = σ0 + σsat + σpQCD (1)

where the saturated component, σsat, contains the dynamics of the interac-
tions at scales lower than the saturation scale. In our approach the satu-

ration scale is a cutoff at low transverse momenta of the perturbative cross

section, σpQCD, which is given by:

σpQCD =
1

2

∫
Q2

s

dp2
T

∑
i,j

∫
dx1 dx2 fi(x1, p

2
T ) fj(x2, p

2
T ) σ̂ij (2)

where fi(x,Q2) is the parton density of the species i, with fractional momen-
tum x1 (or x2) in the proton and σ̂ij is the elementary parton-parton cross
section. We have used the MRST parton distributions [5]. The saturation
scale is given by Q2

s(x) = Q2
0 (x0

x )λ , where the parameters Q2
0 = 0.3 GeV2

and x0 = 0.3 × 10−4 were fixed by fitting the ep HERA data. Following [6]

we take x =
q2
0
s and q0 = 1.4 GeV. Therefore we have

Q2
s(s) ∝ sλ

.
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In Fig. 1 we show in arbitrary units the energy behavior of the ratio
σpQCD/ ln2 s (solid lines) and σsat/ ln2 s (dashed lines) for two choices of λ.
As it can be seen the choice λ = 0.25 leads to a fast growth of σpQCD until√

s = 104 GeV. From this point on, it grows slower than ln2 s. A slight
increase in λ (= 0.3) is enough to tame the growth of σpQCD already at√

s ≃ 103 GeV. On the other hand, a decrease in λ (= 0.1) would postpone
the fall of the ratio to very high energies

√
s ≃ 106 GeV. Although the

energy at which the behavior of the cross section becomes “sub-Froissart”
may depend on λ, one conclusion seems very robust: once λ is finite, at

some energy the growth of the cross section will become weaker than ln2s.

For the saturated component we shall use the model proposed in Ref.
[6]:

σsat =

∫
d2r⊥|Ψp(r⊥)|2σdip(x, r⊥) (3)

where the proton wave function Ψp is chosen to be a gaussian with the
typical size of the proton [7] and the dipole-proton cross section reads:

σdip(r⊥, x) = 2

∫
d2bN (x, r⊥, b) . (4)

We take the dipole scattering amplitude from [8] (we call it IIM) and, fol-
lowing [6], introduce the b dependence by witting:

N (x, r⊥, b) = 1 − e
−κ

S(b)
S(0) (5)

where the parameter κ is related to the b = 0 solution through κ = −ln[1−
N (b = 0)]. In (5), the profile function is assumed to be S(b) = e(−b2/R2

p),
where Rp = 0.7 fm is the proton radius.

In Fig. 2 we present our results for the total cross section for different
values of λ and compare them with experimental data. For references and
details see [7]. σ0 was assumed to be energy independent [9], important
only at lower energies and therefore was not included in our calculations.
There is only a small range of values of λ which allow us to describe the
experimental data. If, for instance, λ = 0.4 the resulting cross section is very
flat and clearly below the data, while if λ = 0.1 (not shown in figure) the
cross section grows very rapidly deviating strongly from the experimental
data. The best choice for λ is in the range 0.25 − 0.30, which is exactly
the range predicted in theoretical estimates using CGC physics and usually
obtained by the saturation models for the ep HERA data. In [7] we have
replaced the IIM dipole cross section by the more modern ones given in [10]
but the results do not change very much.
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Fig. 2. Energy behavior of the total pp/pp̄ cross section for different values of λ.
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[7] F. Carvalho, F. O. Durães, V. P. Gonçalves and F. S. Navarra, arXiv:0705.1842
[hep-ph].

[8] E. Iancu, K. Itakura, S. Munier, Phys. Lett. B 590, 199 (2004).

[9] See, for example, H. G. Dosch, E. Ferreira and A. Kramer, Phys. Rev. D 50,
1992 (1994); H. G. Dosch, F. S. Navarra, M. Nielsen and M. Rueter, Phys.
Lett. B 466, 363 (1999).
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